SO SÁNH HIỆU QUẢ PHÂN LOẠI THẢM PHỦ TỈNH ĐẮK LẮK TỪ DỮ LIỆU ẢNH VIỄN THÁM BẰNG THUẬT TOÁN HỌC MÁY


Các tác giả

  • Hồ Đình Bảo Trường Đại học Tây Nguyên
  • Nguyễn Thế Hiển Trường Đại học Tây Nguyên
  • Lê Thị Mai Trang Trường Đại học Tây Nguyên
  • Nguyễn Thị Thanh Hương
DOI: https://doi.org/10.70169/VJFS.1014

Từ khóa:

Phân loại thảm phủ, viễn thám, thuật toán học máy, tỉnh Đắk Lắk

Tóm tắt

Rừng ở Đắk Lắk rất đa dạng và phong phú, nhưng đã bị suy giảm nghiêm trọng do sự mở rộng phát triển kinh tế - xã hội, dẫn đến thay đổi thảm phủ sử dụng đất. Nhằm quản lý hiệu quả sự thay đổi này, nghiên cứu sử dụng dữ liệu ảnh vệ tinh Landsat 5 và các thuật toán học máy để phân loại bốn loại thảm phủ chính, gồm: Mặt nước, Dân cư, Nông nghiệp và Rừng. Ba thuật toán được áp dụng gồm Phân loại cây hồi quy (CART), Rừng ngẫu nhiên (RF), và Máy véc-tơ hỗ trợ (SVM), với quá trình phân loại thực hiện trên nền tảng Google Earth Engine (GEE). Tổng cộng 701 điểm mẫu được thu thập để huấn luyện, kiểm tra độc lập và đánh giá độ tin cậy phân loại hiện trạng. Kết quả cho thấy thuật toán RF đạt độ chính xác tổng thể cao nhất (92,75%) và hệ số Kappa 0,90, vượt trội so với CART (90%, Kappa 0,86) và SVM (80,7%, Kappa 0,72). RF thể hiện ưu thế trong việc phân biệt các loại thảm phủ, đặc biệt giảm nhầm lẫn giữa nông nghiệp và rừng thưa. Trong khi đó, SVM gặp khó khăn với các lớp tín hiệu quang phổ chồng chéo như nông nghiệp và dân cư. CART đạt hiệu suất gần tương đương RF, là lựa chọn đáng tin cậy. Nghiên cứu khẳng định RF là phương pháp tối ưu trong phân loại thảm phủ sử dụng đất tại Đắk Lắk, cung cấp cơ sở khoa học quan trọng cho quản lý tài nguyên rừng và phát triển bền vững.

Tài liệu tham khảo

Breiman L. and Ihaka R., 1984. Nonlineardiscriminant analysis via scaling and ACE. Department of Statistics, University of California,Technical Report. 40, 1.

Breiman L., 2001. Random Forests. Machine Learning Journal Paper, 45(1), p. 5-32.

Congalton R.G., and Green K., 1999. Assessing the accuracy of remotely sensed data: Principles and practices. Lewis Publishers. Boca Raton FL.

Esfandeh S., Danehkar A., Salmanmahiny A., Sadeghi S.M.M., Marcu M.V., 2022. Climate change risk of urban growth and land use/land cover conversion: An In-Depth Review of the Recent Research in Iran Sustainability, 14(1). https:// doi. org/ 10. 3390/ su140 10338.

Gorelick N., Hancher M., Dixon M., Ilyushchenko S., Thau D., Moore R., 2017. Google earth engine: planetary-scale geospatial analysis for everyone. Remote Sens Environ 202:18–27. https:// doi. org/ 10. 1016/j. rse. 2017. 06. 031.

Jenkins M. and Schaap B., 2018. Forest Ecosystem Services. The thirteenth session of United Nation Forum on Forests. Apr 2018.

Khalid F., Taj M.B., Jamil A., Kamal H., Afzal T., Iqbal M.J., Khan T., Ashiq M., Raheel A., Sharif M., and Tirmizi S.A., 2019. Multiple Impacts of Illegal Logging: A key to Deforestation Over the Globe. Biomedical Journal of Scientific & Technical Research, August, 2019, Volume 20, 5, pp 15430 – 15435. DOI: 10.26717/BJSTR.2019.20.003519.

Kolli M.K., Opp C., Karthe D., Groll M., 2020. Mapping of major land-use changes in the Kolleru Lake freshwater ecosystem by using Landsat satellite images in Google earth engine. Water, 12(9). https:// doi. org/ 10. 3390/ w1209 2493.

Kuang W., Yang T., Yan F., 2018. Examining urban land-cover char-acteristics and ecological regulation during the construction of Xiong’an New District, Hebei Province. China J Geograph Sci 28(1):109–123. https:// doi. org/ 10. 1007/ s11442- 018- 1462-4.

Li C., Wang J., Wang L., Hu L., Gong P., Li C., Gong P., 2014. Comparison of Classification Algorithms and Training Sample Sizes in Urban Land Classification with Landsat Thematic Mapper Imagery. Remote Sensing, 6(2), 964–983. https://doi.org/10.3390/rs6020964.

Lu D., Weng Q.A., 2007. Survey of image classification methods and techniques for improving classification performance. Int. J. Remote Sens., 28, 823 - 870.

Mutale B., Withanage N.C., Mishra P.K., Shen J., Abdelrahman K., Fnais M.S., 2024. A performance evaluation of random forest, artificial neural network, and support vector machine learning algorithms to predict spatio-temporal land use-land cover dynamics: a case from lusaka and colombo. Front. Environ. Sci., 11 September 2024, Sec. Land Use Dynamics, Volume 12 – 2024. https://doi.org/10.3389/fenvs.2024.1431645. Call me

Nguyen, H. T. T., 2011. Forestry Remote Sensing: Using multi-data sources for inventory of natural broadleaved evergreen forests in the Central Highlands of Vietnam. 152pg. ISBN: 978-3-8454-3589-3. Lambert Academic Publishing, Germany.

Nguyen H. T. T., Doan T. M., Radeloff V., 2018. Applying random forest classification to map land use/land cover using Landsat 8 OLI, Int. Arch. Photogramm. Remote Sens. Spatial Inf. Sci., XLII-3/W4, 363-367, https://doi.org/10.5194/isprs-archives-XLII-3-W4-363-2018, 2018.

Nguyễn Thanh Tuấn, Phan Văn Tuấn, Nguyễn Văn Quý, Hoàng Thị Phương Nhung, 2022. Sử dụng ảnh vệ tinh Sentinel 2 và thuật toán học máy thành lập bản đồ hiện trạng rừng tại huyện Bù Đăng, tỉnh Bình Phước. Tạp chí khoa học Trường Đại học Cần Thơ, Tập 58, số 6B (2022): 150-163. DOI:10.22144/ctu.jvn.2022.254.

Ouchra H., Belangour A., Erraissi A. 2023. Machine learning algorithms for satellite image classification using Google Earth Engine and Landsat satellite data: Morocco case study. IEEE Access, volume 11, 2023. Digital Object Identifier 10.1109/ACCESS.2023.3293828.

Pande C.B., 2022. Land use/land cover and change detection map-ping in Rahuri watershed area (MS), India using the google earth engine and machine learning approach. Geocarto Int 37(26):13860–13880. https:// doi. org/ 10. 1080/ 10106 049. 2022. 20866 22.

Phan Trọng Thế, Mai Thị Huyền, Nguyễn Bá Long, 2023. Đánh giá dự báo biến động sử dụng đất tại huyện Nhơn Trạch, tỉnh Đồng Nai trên cơ sở ứng dụng hệ thống thông tin địa lý (GIS) và chuỗi Markov. Tạp chí Khoa học và công nghệ Lâm nghiệp số 2 – 2023. https://doi.org/10.55250/jo.vnuf.2023.2.146-155.

Phan, T.N., & Kappas, M. (2018). Comparison of Random Forest, k-Nearest Neighbor, and Support Vector Machine Classifiers for Land Cover Classification Using Sentinel-2 Imagery. Sensors, 18(1), 18 - 37, Doi:10.3390/s18010018.

Sidhu N., Pebesma E., Camara G., 2018. Using Google earth engine to detect land cover change: Singapore as a use case. Eur J Remote Sens 51(1):486–500. https:// doi. org/ 10. 1080/ 22797 254. 2018. 14517 82.

Thomas M.L., Ralph W. Kiefer J.C., 2004. Remote Sensing and Image Interpretation (Fifth Edition). Geogr. J. 2004, 146, 448–449.

Tso B., Mather P.M., 2009. Classification methods for remotely sensed data (Second edition ed.). Boca Raton: CRC.

Vapnik V., 1995. The nature of statistical learning theory. Springer-Verlag New York, Inc.

Vapnik V., 2006. Estimation of Dependences Based on Empirical Data (Information Science and Statistics): Springer.

Waske, B., & Braun, M., 2009. Classifier ensembles for land cover mapping using multitemporal SAR imagery. ISPRS J. Photogramm. Remote Sens., 64, 450 - 457.

Xie S., Liu L., Zhang X., Yang J., Chen X., Gao Y., 2019. Auto-matic land-cover mapping using Landsat time-series data based on Google earth engine. Remote Sens, 11(24). https:// doi. org/ 10. 3390/ rs112 43023.

Yao Y., Yan X., Luo P., Liang Y., Ren S., Hu Y. et al., 2022. Classifying land-use patterns by integrating time-series electricity data and high-spatial resolution remote sensing imagery. Int J Appl Earth Obs Geoinf 106:102664. https:// doi. org/ 10. 1016/j. jag. 2021. 102664.

Website: https://www.usgs.gov/landsat-missions/landsat-5. Truy cập ngày 15/11/2024.

Đã xuất bản

07-01-2025

Số lượt xem tóm tắt

0

PDF Tải xuống

Cách trích dẫn

[1]
Hồ, Đình B., Nguyễn, T.H., Lê Thị Mai, T. và Nguyễn , T.T.H. 2025. SO SÁNH HIỆU QUẢ PHÂN LOẠI THẢM PHỦ TỈNH ĐẮK LẮK TỪ DỮ LIỆU ẢNH VIỄN THÁM BẰNG THUẬT TOÁN HỌC MÁY. TẠP CHÍ KHOA HỌC LÂM NGHIỆP. (tháng 1 2025). DOI:https://doi.org/10.70169/VJFS.1014.

Số

Chuyên mục

Bài viết

Các bài báo được đọc nhiều nhất của cùng tác giả