Using Sentinel 2 data on Google Earth Engine cloud computing platform for assesssing forest cover change in special use and protection forests in Vo Nhai district, Thai Nguyen province

Authors

  • Nguyen Dang Cuong Trường Đại học Nông Lâm, Đại học Thái Nguyên
  • Pham Duc Chinh Trường Đại học Nông Lâm, Đại học Thái Nguyên
  • Pham Duc Chinh Trường Đại học Nông Lâm, Đại học Thái Nguyên
  • Nguyen Van Bich Viện Nghiên cứu Lâm sinh, Viện Khoa học Lâm nghiệp Việt Nam

Keywords:

Forest cover change, Google Earth Engine, image classification, Sentinel 2, Random Forest

Abstract

Changing in forest cover leads to a reduction of forest area in a spcecific time period. The research applied Google Earth Engine (GEE) to develop forest cover map layers and acccuracy assessment of classified forest cover maps for Sentinel 2. The study was conducted in special use forest areas in Specieal use and Protection Forest Management Board of Thai Nguyen province (former was Than Sa - Phuong Hoang nature reserve Management Board). Random Forest (RF) was applied in this study for classification and it performed a high acccuracy of classified images for forest covers. The results showed that the classification accuracy of classified maps in 2017, 2018, 2019, 2020 and 2021 was 98.7%; 99.3%; 99.3%; 98.5% và 99.5% (Overall acccuracy) and 0.974; 0.985; 0.986; 0.969 và 0.990 (Kappa) respectively. There was a significant upward trend of forest cover in the period from 2017 to 2021. Specifically, forested areas rose by 894,5 ha in the period from 2017 to 2021. The drivers of forest cover increase were due to afforestation and forest restoration. Implication of GEE, Sentinel 2 and classification algorithm RF achieved a high accuracy of the forest cover classification and it could be able to apply for other regions in Thai Nguyen province.

References

1. Báo cáo tổng kết năm 2017, 2018, 2019 và 2020 của Ban quản lý khu bảo tồn thiên nhiên Thần Sa - Phượng Hoàng, huyện Võ Nhai, tỉnh Thái Nguyên.

2. Bala G., Caldeira K., Wickett M., Phillips T., Lobell D., Delire C. and Mirin A., 2007. Combined climate and carbon-cycle effects of large-scale deforestation. Proceedings of the National Academy of Sciences 104 (16), 6550 - 6555.

3. Betts R., Falloon P., Goldewijk K. and Ramankutty N., 2007. Biogeophysical effects of land use on climate: model simulations of radiative forcing and large-scale temperature change. Agricultural and Forest Meteorology 142 (2 - 4), 216 - 233.

4. Bradley B.A., Jacob R.W., Hermance J.F. and Mustard J.F., 2007. A curve fitting procedure to derive inter-annual phenologies from time series of noisy satellite NDVI data. Remote Sens. Environ. 106, 137 - 145.

5. Breiman, L., 1984. Classification and Regression Trees. Chapman & Hall/CRC. pp 368

6. Chan J.C.W. and Paelinckx D., 2008. Evaluation of Random Forest and Adaboost treebased ensemble classification and spectral band selection for ecotope mapping using airborne hyperspectral imagery. Remote Sensing of Environment 112 (6), 2999 - 3011.

7. Nguyễn Thị Mai Dương, Lã Nguyên Khang, Lê Công Trường, Phùng Văn Kiên và Nguyễn Văn Hào, 2016. Phân tích nguyên nhân mất rừng, suy thoái rừng làm cơ sở đề xuất giải pháp quản lý bảo vệ rừng tỉnh Đắk Nông. Tạp chí Khoa học và Công nghệ Lâm nghiệp số 6: 39 - 48.

8. Ghimire B., Rogan J. and Miller J., 2010. Contextual land-cover classification: incorporating spatial dependence in land-cover classification models using random forests and the Getis statistic. Remote Sensing Letters 1, 45 - 54.

9. Nguyễn Thị Thanh Hương và Đoàn Minh Trung, 2018. Áp dụng thuật toán phân loại Random Forest để xây dựng bản đồ sử dụng đất/thảm phủ tỉnh Đắk Lắk dựa vào ảnh vệ tinh Landsat 8 OLI. Tạp chí Nông nghiệp vàPhát triển nông thôn, số 13: 122 - 129.

10. Trần Vũ Khánh Linh và Viên Ngọc Nam, 2019. Ứng dụng ảnh viễn thám Sentinel 2A xây dựng bản đồ các kiểu sử dụng đất bằng kỹ thuật phân loại hướng đối tượng. Tạp chí Bảo vệ Rừng và Môi trường.

11. Liu H., Li Q., Shi T., Hu S., Wu G. and Zhou Q., 2017. Application of Sentinel 2 MSI images to retrieve suspended particulate matter concentrations in Poyang Lake. Remote Sensing, 9(7): 1 - 19.

12. Mahdianpari M., Salehi B., Mohammadimanesh F., Homayouni S. and Gill E., 2019. The first wetland inventory map of newfoundland at a spatial resolution of 10 m using sentinel -1 and sentinel-2 data on the google earth engine cloud computing platform. Remote Sensing, 11(1): 1 - 27.

13. Mas J., Velázquez A., Díaz-Gallegos J., Mayorga-Saucedo R., Alcántara C., Bocco G., Castro R., Fernández T. and Pérez-Vega A., 2004. Assessing land use/cover changes: a nationwide multidate spatial database for Mexico. International Journal of Applied Earth Observation and Geoinformation 5 (4), 24 9 - 261.

14. Parente L. and Ferreira L., 2018. Assessing the spatial and occupation dynamics of the Brazilian pasturelands based on the automated classification of MODIS images from 2000 to 2016. Remote Sensing, 10(4): 1 - 14.

15. Parks S.A., Holsinger L.M., Voss M.A., Loehman R.A. and Robinson N.P., 2018. Mean composite fire severity metrics computed with Google Earth Engine offer improved accuracy and expandedmapping potential. Remote Sensing, 10(6): 1 - 15.

16. Rodriguez-Galiano V.F., Ghimire B., Rogan J., Chica-Olmo M. and Rigol-Sanchez J.P., 2012. An assessment of the effectiveness of a random forest classifier for land-cover classification. ISPRS Journal of Photogrammetry and Remote Sensing, 67: 93 - 104.

17. Sesnie S., Gessler P., Finegan B. and Thessler S., 2008. Integrating Landsat TM and SRTM-DEM derived variables with decision trees for habitat classification and change detection in complex neotropical environments. Remote Sensing of Environment 112 (5): 2145 - 2159.

18. Nguyễn Ngọc Phương Thanh, Phạm Bách Việt và Hồ Lâm Trường, 2017. Đánh giá khả năng phân loại ảnh vệ tinh của Google Earth Engine. Kỷ yếu hội nghị khoa học & công nghệ lần thứ 15, NXB Đại học quốc gia TP hCM - 2017.

19. Thiede R., Sutton T., Düster H. and Sutton M., 2014. Quantum GIS training manual. Quantum Organisation. pp 467.

20. Nguyễn Thị Thoa, Lê Văn Phúc, Nguyễn Quang Lịch, Nguyễn Văn Tuyên, Phan Quốc Thụ và Lê Hữu Thức, 2018. Đa dạng thực vật ở khu bảo tồn thiên nhiên Thần Sa - Phượng Hoàng, tỉnh Thái Nguyên. NXB Nông

nghiệp, Hà Nội, 152 trang.

21. Tsai Y.H., Stow D., Chen H.L., Lewison R., An L. and Shi L., 2018. Mapping vegetation and land use types in Fanjingshan National Nature Reserve using google earth engine. Remote Sensing, 10(6), 1 - 14

Published

04-04-2024

How to Cite

[1]
Cuong, N.D., Chinh, P.D., Chinh, P.D. and Bich, N.V. 2024. Using Sentinel 2 data on Google Earth Engine cloud computing platform for assesssing forest cover change in special use and protection forests in Vo Nhai district, Thai Nguyen province. VIETNAM JOURNAL OF FOREST SCIENCE. 1 (Apr. 2024).

Issue

Section

Articles