Developing simultaneously modeling systems for improving reliability of tree aboveground biomass - carbon and its components estimates for Machilus odoratissimus Nees in the Central Highlands of Viet Nam

Authors

  • Bao Huy Trường Đại học Tây Nguyên
  • Trieu Thi Lang Trường Đại học Tây Nguyên

Keywords:

Machilus odoratissimus, biomass,, carbon, seemingly unrelated regression (SUR)

Abstract

Machilus odoratissimus Nees is a species of multi - purposes, hight economic value and environmental protection. In plantation business, it demands modeling system that predicts accurately aboveground biomass and its components; At the same time, the developed models support to compute carbon accumulation of forest trees for program of reducing emissions fro deforestation and forest degradation. Twenty - two 300 m2 plots within the full range of 1 - 7 ages in the Central Highlands were measured. A total of 22 averaged - diameter trees were destructively sampled to obtain a dataset of the dry biomass/carbon of the stem (Bst/Cst), bark (Bba/Cba), branches (Bbr/Cbr), leaves (Ble/Cle), and total aboveground biomass/carbon (AGB/AGC). The study compared two methods: developing independent equations was weighted nonlinear regression fit by maximum likelihood and building simultaneous modeling system was weighted nonlinear fit by seemingly unrelated regression (SUR). As a result, the modeling system devloped simultaneously using SUR produced higher reliability than the models established independently. The selected forms of modeling systems for estimating tree aboveground biomass/carbon and its components were AGB = Bst + Bba+ Bbr + Ble = a1×(D2H) b1 + a2×(D2H) b2 + a3×D b3 + a4×(D2H) b4 and AGC = Cst + Cba+ Cbr + Cle = a1×(D2H) b1 + a2×(D2H) b2 + a3×D b3 + a4×(D2H) b4

References

1. Akaike, H., 1973. Information theory as an extension of the maximum likelihood principle. In: Petrov, B.N., Csaki, F.E. (Eds.), Second International Symposium on Information Theory. Akademiai Kiado, Budapest, pp. 267 - 281

2. Bảo Huy, 2012. Ước lượng năng lực hấp thụ CO2 của cây Bời lời đỏ (Litsea glutinosa) trong các mô hình nông lâm kết hợp Bời lời đỏ - sắn ở Tây Nguyên làm cơ sở chi trả dịch vụ môi trường. Tạp chí Rừng và Môi trường, 44 - 45(2012): 14 - 20

3. Basuki, T.M., van Laake, P.E., Skidmore, A.K., Hussin, Y.A., 2009. Allometric equations for estimating the above - ground biomass in the tropical lowland Dipterocarp forests. Forest Ecology and Management 257, 1684 - 1694.

4. Brown, S., 1997. Estimating biomass and biomass change of tropical forests: A Primer. FAO Forestry paper. 134 pp. ISBN 92 - 5 - 103955 - 0. Available at: http://www.fao.org/docrep/W4095E/w4095e00.htm#Contents.

5. Chave, J., Andalo, A., Brown, S., Cairns, M.A., Chambers, J.Q., Eamus, D., Folster, H., Fromard, F., Higuchi, N., Kira, T., Lescure, J. - P., Nelson, B.W., Ogawa, H., Puig, H., Riera, B., Yamakura, T., 2005. Tree allometry and improved estimation of carbon stocks and balance in tropical forests. Oceologia 145, 87 - 99

6. Chave, J., Mechain, M.R., Burquez, A., Chidumayo, E., Colgan, M.S., Delitti, W.B.C., Duque, A., Eid, T., Fearnside, P.M., Goodman, R.C., Henry, M., Yrizar, A.M., Mugasha, W.A., Mullerlandau, H.C., Mencuccini, M., Nelson, B.W., Ngomanda, A., Nogueira, E.M., Ortiz - Malavassi, E., Pelissier, R., Ploton, P., Ryan, C.M., Saldarriaga, J.G., Vieilledent, G., 2014. Improved allometric models to estimate the aboveground biomass of ropical trees. Global Change Biology 20, 3177 - 3190.

7. Dutca, I., Mather, R., Blujdea, V.N.B., Ioraș, F., Olari, M., & Abrudan, L.V., 2018. Site - effects on biomass allometric models for early growth plantations of Norway spruce (Picea abies (L.) Karst.). Biomass and Bioenergy 116(2018): 8 - 16: DOI: https://doi.org/10.1016/j.biombioe.2018.05.013

8. Furnival, G.M., 1961. An index for comparing equations used in constructing volume tables. Forest Science 7, 337 - 341.

9. Hinsinger, D.D., Strijk, J.S. 2016. Toward phylogenomics of Lauraceae: The complete chloroplast genome sequence of Litsea glutinosa (Lauraceae), an invasive tree species on Indian and Pacific Ocean islands.

http://dx.doi.org/10.1016/j.plgene.2016.08.002

10. Huy, B. 2009. CO2 sequestration estimation of Litsea glutinosa species in agroforestry model of Litsea and Cassava in Mang Yang district, Gia lai province of the Central Highlands of Viet Nam. Technical Report. SIDA,

ICRAF, 44pp.

11. Huy, B. 2014. CO2 sequestration estimation for the Litsea - Casava agroforestry model in the Central Highlands of Vietnam. Compendium of abstracts of World Congress on Agroforestry, New Delhi, India, 10 - 13 Feb 2014. ICAR, World Agroforestry Center, Global Initiatives, pp 18 and pp 1 - 8.

12. Huy, B., Poudel, K.P., Temesgen, H. 2016. Aboveground biomass equations for evergreen broadleaf forests in South Central Coastal ecoregion of Viet Nam: Selection of eco - regional or pantropical models. Forest Ecology

and Management, 376(2016): 276 - 283.

13. Huy, B., Tinh, N.T., Poudel, K.P., Frank, B.M., Temesgen, H. 2019. Taxon - specific modeling systems for improving reliability of tree aboveground biomass and its components estimates in tropical dry dipterocarp forests. Forest Ecology and Management, 437(2019): 156 - 174.

14. IPCC, 2003. Good Practice Guidance for Land Use, Land - Use Change and Forestry. IPCC National Greenhouse Gas Inventories Programme, Hayama, Japan. 590 pp.

15. IPCC, 2006. Forest Land. Chapter 4. In: Eggleston H.S., Buendia L., Miwa K., Ngara T., Tanabe K., (eds): 2006 IPCC Guidelines for National Greenhouse Gas Inventories. Prepared by the National Greenhouse Gas Inventories Programme. Published: IGES, Japan. 83 pp.

16. Kralicek, K., Huy, B., Poudel, K.P., Temesgen, H., Salas, C. 2017. Simultaneous estimation of above - and below - ground biomass in tropical forests of Viet Nam. Forest Ecology and Management 390 (2017): 147 - 156.

17. Lê Văn Minh, 1996. Trồng cây Bời lời. Tạp chí Lâm nghiệp, số 4 - 5(1996): 15 - 20.

18. Pandey, A.K., and Mandal, A.K. 2012. Sustainable Harvesting of Terminalia arjuna (Roxb.) Wight & Arnot (Arjuna) and Litsea glutinosa (Lour.) Robinson (Maida) Bark in Central India. Journal of Sustainable Forestry, 31:294 - 309.

19. Parresol, B.R., 2001. Additivity of nonlinear biomass equations. Can. J. For. Res. 31(5), 865 - 878

20. Phạm Hoàng Hộ. 1999. Cây cỏ Việt Nam, Quyển I. NXB Trẻ. Tp. Hồ Chí Minh, 991 trang.

21. Picard, N., Rutishauser E., Ploton P., Ngomanda A., and Henry, M., 2015. Should tree biomass allometry be restricted to power models? Forest Ecology and Management 353, 156 - 163.

22. Picard, N., Saint - André L., Henry, M. 2012. Manual for building tree volume and biomass allometric equations: from field measurement to prediction. Food and Agricultural Organization of the United Nations, Rome, and Centre de Coopération Internationale en Recherche Agronomique pour le Développement,

Montpellier, 215 pp.

23. Pinheiro, J., Bates, D., Debroy, S., Sarkar, D. & Team, R. C. 2014. nlme: Linear and nonlinear mixed effects models. R package version 3.1 - 117.

24. Poudel, K.P., Temesgen, H. 2016. Methods for estimating aboveground biomass and its components for Douglas - fir and lodgepole pine trees. Can. J. For. Res. 46: 77 - 87; dx.doi.org/10.1139/cjfr - 2015 - 0256

25. R Core Team, 2018. R: A language and environment for statistical computing. R Foundation for Statistical Computing, Vienna, Austria. URL https://www.R - project.org/

26. Sanquetta, C.R., Behling, A., Corte, A.P.D., Netto, S.P., Schikowski, A.B. 2015. Simultaneous estimation as alternative to independent modeling of tree biomass. Annals of Forest Science, 72 (8):1099 - 1112.

27. SAS Institute Inc. 2014. SAS/ETS® 13.2 User’s Guide. Chapter 19: The MODEL Procedure. Cary, NC: SAS Institute Inc. pp. 1067 - 1373.

28. Sumithregowda, A.H., Venkatarangaiah, K., Honnenahally, K.M., Manjunath, V.N. 2017. Cytotoxicity and Oral Acute Toxicity Studies of Litsea glutinosa C. B (ROB) Stem Bark Ethanol Extract. Pharmacogn J. 9(6):880 - 886

29. Temesgen, H, Affleck, D., Poudel, K., Gray, A., and Sessions, J. 2015. A review of the challenges and opportunities in estimating above ground forest biomass using tree - level models. Scandinavian Journal of Forest Research, 2015 30(4); 326 - 335. http://dx.doi.org/10.1080/02827581.2015.1012114

30. The Plant List. 2019. Available at: http://www.theplantlist.org/, assess on 29 March 2019.

31. Walkley, A., and Black, I.A. 1934. An examination of the Degtjareff method for determining soil organic matter and a proposed modification of the chromic acid titration method. Soil Science 37: 29 - 38.

32. Wua, Y., Jina, Y., Donga, L., Lia, Y., Zhanga, C., Guib, M., Zhanga, X. 2017. New lignan glycosides from the root barks of Litsea glutinosa. Phytochemistry Letters, 20 (2017): 259 - 262.

33. Yang, Y. 2008. Proposal to conserve the name Machilus (Lauraceae) with a conserved type. Taxon 57(2): 652 - 654

Published

04-04-2024

How to Cite

[1]
Huy, B. and Lang, T.T. 2024. Developing simultaneously modeling systems for improving reliability of tree aboveground biomass - carbon and its components estimates for Machilus odoratissimus Nees in the Central Highlands of Viet Nam. VIETNAM JOURNAL OF FOREST SCIENCE. 1 (Apr. 2024).

Issue

Section

Articles

Most read articles by the same author(s)