Using sentinel 2 to determine thresholds of remote sensing indices for early detection of deforestation in langbiang world biosphere reserve, lam dong province
Keywords:
Buffer zone, vegetation index, forest change, forest land,, GIS,, remote sensing, Langbiang, Biosphere ReserveAbstract
Using remote sensing and GIS technologies in constructing the status of forest maps as well as changes in extents of forest has become commonly in Vietnam. The study has successfully constructed forest status with five Land
use/Land cover types in 2018 in Langbiang Biosphere Reserve, Lam Dong province. In addition, three remote sesning indices, namely NDVI, NBR and IRSI, were selected and calculated for deforestation sites; the thresholds of
early forest degradation detection in Langbiang Biosphere Reserve have determined at accuracy values ranging from 66.7 ÷ 85.7%. For NDVI, thresholds of early deforestation detection is 0.400 ÷ 0.792. Thresholds of NBR and IRSI are 0.200 ÷ 0.529 and 0.604 ÷ 1.193, respectively. As field -based accuracy assessments, using remote sensing indices (NDVI, NBR and IRSI) for early deforestation detection is reliable and applicable in Langbiang World Biosphere Reserve, Lam Dong.
References
1. Nguyễn Đình Đại, 2013. Nghiên cứu một số giải pháp quản lý bền vững tài nguyên rừng tại các xã nằm trong Vườn quốc gia Hoàng Liên - tỉnh Lào Cai.
2. Gandhi, M.G., Parthiban, S., Thummalu, N., Christy, A, 2015. NDVI: Vegetation change detection using remote sensing and GIS: A case study of Vellore district. Procedia Computer Sceince 57:1199 - 1210.
3. Hamunyela., E., Verbesselt, J., Bruin, S.D., Herold, M, 2016. Monitoring deforestation at Sub - Annual Scales as extrêm events in Landsat data cubes. Remote Sensing 8(8):651.
4. Nguyễn Hải Hòa, Nguyễn Hữu An, 2016. Ứng dụng ảnh viễn thám Landsat 8 và GIS xây dựng bản đồ sinh khối và trữ lượng cácbon rừng trồng keo lai (Acacia hybrid) tại huyện Yên Lập, tỉnh Phú Thọ, T/C Khoa học và Công nghệ Lâm nghiệp 4:70 - 78.
5. Krakauer, N.Y., Lakhankar, T., Anadon, J.D, 2017. Mapping and attributing normalised difference vegetation index trends for Nepal. Remote Sensing 9:1 - 15.
6. Munoz, M.A., Navarro, F.A.R, 2016. An NDVI - data harmonic analysis to study deforestation in Peru’s Tahuamanu province during 2001 - 2011. International Journal of Remote Sensing, 37(4): 856 - 875.
7. Schepers, L., Haest, B., Veraverbeke, S., Spanhove, T., Borre, J.V., Goossens, R, 2014. Burned area detection and burn severity assessment of a heatland fire in Belgium using airborne imaging spectroscopy (APEX). Remote Sensing 6:1803 - 1826
8. Singh, R.P., Singh, N., Singh, S., Mukheriee, S, 2016. Normalised Difference Vegetation Index (NDVI) based classification to assess the change in land use/land cover (LULC) in lower Assam, India. International Journal of Advanced Remote Sensing and GIS 5(10): 1963 - 1970.
9. Nguyễn Trường Sơn, 2008. Nghiên cứu sử dụng ảnh vệ tinh và công nghệ GIS trong việc giám sát hiện trạng tài nguyên rừng, Báo cáo khoa học, Trung tâm viễn thám quốc gia, Hà Nội.
10. Đỗ Anh Tuấn, 2001. Nghiên cứu một số nguyên tắc và giải pháp quản lý khu Bảo tồn thiên nhiên Pù Mát,
11. Thủ tướng chính phủ, 2006. Quyết định của thủ tướng chính phủ số về việc phê duyệt chương trình điều tra đánh giá và theo dõi diễn biến tài nguyên rừng toàn quốc thời kỳ 2006 - 2010, Hà Nội.
12. Sở Nông nghiệp và Phát triển nông thôn Lâm Đồng (NN&PTNT), 2013. Báo cáo quy hoạch phát triển nông nghiệp, nông thôn tỉnh Lâm Đồng đến năm 2020.
13. Xie, Y., Sha, Z., Yu, M, 2008. Remote sensing imagery in vegetation mappin: a review. Journal of Plant Ecology 1(1):9 - 23.
14. Wu, Z., Middleton, B., Hetzler, R., Vogel, J., Dye, D, 2017. Vegetation burn severity mapping using Landsat 8 and Worldview 2. Photgrammetric Engineering and Remote Sensing 84(2): 143 - 154